On the growth rates of the composition of integer translated entire and meromorphic functions

Authors

  • Manab Biswas Department of Mathematics, Kalimpong College, Kalimpong, Dist- Kalimpong, PIN-734301, West Bengal, India
  • Debashis Kumar Mandal Department of Mathematics, Cooch Behar College, Cooch Behar, Dist-Cooch Behar, PIN-736101, West Bengal, India

DOI:

https://doi.org/10.5644/SJM.21.01.14

Keywords:

Entire function, meromorphic function, $\left( {p,q}\right) $-order and lower $\left( {p,q}\right) $-order, integer translation, growth

Abstract

The integer translation of a function $f(z)$ is denoted by $f\left(
z+n\right) $ for each $n\in
%TCIMACRO{\U{2124} }%
%BeginExpansion
\mathbb{Z}
%EndExpansion
.$ It is possible to obtain a function with certain characteristics for each
$n\in
%TCIMACRO{\U{2124} }%
%BeginExpansion
\mathbb{Z}
%EndExpansion
.$ This study examines the impact of integer translations on the growth and behavior of a meromorphic function $f(z)$. Specifically, we consider the family of meromorphic functions generated by integer shifts of $f(z)$, denoted as,%
\[
f_{n}\left( z\right) =\left\{ f\left( z+n\right) :n\in
%TCIMACRO{\U{2124} }%
%BeginExpansion
\mathbb{Z}
%EndExpansion
\right\} .
\]
The primary focus is on understanding how these integer translations affect the Nevanlinna characteristic function $T(r,f),$ which is a key tool for assessing the growth of meromorphic functions. Our study also includes a comparative growth analysis between integer-translated versions of both entire and meromorphic functions. By examining a range of conditions, we provide insights into how translation influences the growth and value distribution of the functions. This investigation contributes to a deeper understanding of translation-invariant properties in complex analysis and offers new perspectives on the dynamic growth behavior of meromorphic and entire functions.

 

Statistics

Abstract: 220  /   PDF: 66

 

References

B. Belaidi, Growth of $rho _{varphi }$-order solutions of linear differential equations with entire coefficients, Panam. Math. J. 27(2017), 26-42.

B. Belaidi and T. Biswas, Study of complex oscillation of solutions of a second order linear differential equation with entire coefficients of $left( alpha ,beta ,gamma right) $-order, WSEAS Trans. Math., 21(2022), 361-370.

B. Belaidi and T. Biswas, Growth properties of solutions of complex differential equations with entire coefficients of finite $left( alpha ,beta ,gamma right) $-order, Electronic Journal of Differential Equations, (27)(2023), 1-14.

W. Bergweiler, G. Jank and L. Volkmann, Wachstumsverhalten zusammengesetzter Funktionen, Results in Mathematics, 7(1984),35-53.

W. Bergweiler, On the Nevanlinna characteristic of a composite function, Complex Variables, 10(1988), 225-236.

T. Biswas and S. K. Datta, Effect of integer translation on relative order and relative type of entire and meromorphic functions, Commun. Korean Math. Soc., 33(2)(2018), 485-494.

M. Biswas and D. K. Mandal, Growth analysis of composition of Integer translated entire and meromorphic functions, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 30(3)(2023),269-288.

T. Biswas, On some growth analysis of entire and meromorphic functions in the light of their integer translation, Palestine Journal of Mathematics, 9(1) (2020), 579-593.

R. Bouabdelli and B. Belaidi, Growth and complex oscillation of linear differential equations with meromorphic coefficients of $[p,q]_{,varphi }$-order, Int. J. Anal. Appl. 6(2)(2014), 178-194.

E. Borel, Sur les zeros des fonctions enti'{e}res, Acta Math, 20(1897), 357-396.

E. Borel, Lecons sur les fonctions entieres. Gauthier-Villars, Paris, 1900.

I. Chyzhykov, J. Heittokangas and J. Rattya, Finiteness of $varphi $-order of solutions of linear differential equations in the unit disc, Journal d Analyse Mathematique, 109(1)(2009),163-198.

I. Chyzhykov and N. Semochko, Fast growing entire solutions of linear differential equations, Math. Bull. Shevchenko Sci. Soc., 13(2016), 68-83.

J. Clunie, The composition of entire and meromorphic functions, Mathematical Essays dedicated to A. J. Macintyre, Ohio University Press (1970), 75-92.

S.K. Datta, T. Biswas and M. Biswas, Some sharper estimations of growth relationships of composite entire functions on the basis of their maximum terms, Palestine Journal of Mathematics, 3(1) (2014), 77-93.

P. V. Filevych and O. B. Hrybel, Generalized and modified orders of growth for Dirichlet series absolutely convergent in a half-plane, Matematychni Studii., 61(2)(2024),136-147.

W.K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford (1964).

J. Heittokangas, J. Wang, Z. T. Wen and H. Yu, Meromorphic functions of finite $varphi $-order and linear $q$-difference equations, J. Difference Equ. Appl. 27(9)(2021), 1280-1309.

T. Ya. Hlova and P .V. Filevych, The growth of entire functions in the terms of generalized orders, Carpathian Mathematical Publications, 4(1)(2012), 28-35.

T. Ya. Hlova and P. V. Filevych, The growth of analytic functions in the terms of generalized types, Journal Of Lviv Polytechnic National University "Physical and Mathematical sciences", 804(2014), 75-83.

O. P. Juneja, G. P. Kapoor and S. K. Bajpai, On the $(p,q)$-order and lower $(p,q)$-order of an entire function, J. Reine Angew. Math., 282(1976), 53-67.

M. A. Kara and B. Belaidi, Some Estimates of the $varphi $-order and the $varphi $-type of Entire and Meromorphic Functions, Int. J. Open Problems Complex Analysis, 10(3)(2019), 42-58.

M. A. Kara and B. Belaidi, Growth of $varphi $-order solutions of linear differential equations with meromorphic coefficients on the complex plane, Ural Math. J., 6(1)(2020), 95-113.

M. Khedim and B. Belaidi, On the $varphi $-order of growth of solutions of complex linear differential equations near an essential singular point, Pan-American Journal of Mathematics, 3(17)(2024),1-15.

L. Kinnunen, Linear differential equations with solutions of finite iterated order, Southeast Asian Bull. Math. 22(4)(1998),385-405.

J. Long, H. Qin and L. Tao, On $[p,q]_{,varphi }$-order and complex differential equations, J. Nonlinear Math. Phys. (2023).

O. M. Mulyava, M. M. Sheremeta and Yu. S. Trukhan, Properties of solutions of a heterogeneous differential equation of the

second order, Carpathian Math. Publ., 11(2)(2019), 379-398.

R. Nevanlinna, Zur theorie der meromorphen funktionen, Acta Math., 45(1925), 1-99.

R. Nevanlinna, Le Theoreme de Picard-Borel et la theorie des fonctions meromorphes. Gauthier-Villars, 1929.

E. Picard, Sur une propriee des fonctions entieres, C. R. Acad. Sci. Paris, 88(1879), 1024-1027.

E. Picard, Sur les fonctions analytiques uniformes dans le voisinage d'un point singulier essentiel, C. R. Acad. Sei. 89(1879), 745-747.

D. Sato, On the rate of growth of entire functions of fast growth, Bull. amer. math. soc. 69(1963) , 411-414.

A. Schonhage, Uber das Wachstum zusammengesetzter Funktionen, Math. Z., 73(1960), 22-44.

M. N. Sheremeta, Connection between the growth of the maximum of the modulus of an entire function and the moduli of the coefficients of its power series expansion, Izv. Vyssh. Uchebn. Zaved Mat., 57(1967), 100-108 (in Russian).

X. Shen, J. Tu and H. Y. Xu, Complex oscillation of a second-order linear differential equation with entire coefficients of $[p,q]_{,varphi }$-order, Advances in Difference Equations volume 2014, 2014:200, 1-14.

M. N. Sheremeta, On the growth of a composition of entire functions, Carpathian Math. Publ., 9(2)(2017), 181-187.

G. Valiron, Lectures on the General Theory of Integral Functions. Chelsea Publishing Company (1949).

Downloads

Published

05.09.2025

How to Cite

Biswas, M., & Mandal, D. K. (2025). On the growth rates of the composition of integer translated entire and meromorphic functions. Sarajevo Journal of Mathematics, 21(1), 163–183. https://doi.org/10.5644/SJM.21.01.14

Issue

Section

Articles